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Structural Damage Detection by Genetic Algorithms
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A two-stage procedure utilizing incomplete measurements to assess the location and extent of structural damage
is presented. In the � rst stage, candidatedamaged elements are identi� ed using the residual force method.Based on
a priori knowledge from the � rst stage, the damageextent is determined from candidate elements using a proposed
optimization scheme based on the method of simulated evolution.

Introduction

H EALTH monitoringof structures,especially large space struc-
tures intendedfor long-termoperation, is essential in develop-

ing short-term or long-term repair/implementation plans. Because
the expense of maintenance,replacement, and time out of service is
costly, it is advantageousto developmethods that can detect, locate,
and estimate the extent of the damage with the least disruption of
the operation process.

System identi� cation techniqueshavebeen extensivelyemployed
by many researchers for the assessment of structural integrity.1¡8

The theoreticalbackgroundof system identi� cation methods is that
the differencesin structuraldynamiccharacteristicsbetween the un-
damaged and damaged structures are translated into the changes of
propertymatrices (stiffness/mass) that reveal the structuraldamage.

The problem of incomplete measurement is a common issue in
system identi� cation techniques used to address structural damage
detection. It is impossible to measure experimentally the structural
response at all degrees of freedom (DOF) and in all modes of vi-
bration. Another dif� culty is that the measured modes used for the
damagedetectionare corruptedby the measurementnoise.This fac-
tor makes it hard to compare responses of damaged structures with
those of undamaged structures, especially when the differences be-
tween them are not considerable.

The dif� culties cited have been the subject of some current
works6¡10 and created the motivation for the present study. The out-
put error approachof system identi� cation is employed in this work
to determine changes in the undamaged structure necessary to min-
imize differences between the measured and predicted responses.
One importantadvantageof this approach is that the complete set of
modes or displacementsis notneededbecausethe objectivefunction
involves only the difference between components of these vectors.
This approach was used in Ref. 7, in which nonlinear mathematical
programming methods were employed to determine a solution to
the unconstrainedoptimization problem proposed by them.

A major drawback of nonlinear mathematical programming al-
gorithms is that they are susceptible to convergenceto local optima
due to nonconvexities of the design space.7 In addition, these al-
gorithms depend on the existence of derivatives of the objective
functions, thus, in a complex or a discontinuoussearch space it will
be very dif� cult or sometimes impossible to obtain an optimum
solution.

In this paper, genetic algorithmshave been utilized for minimiza-
tion of objective functions.Because the size of search space is also a
critical issue when dealingwith genetic algorithms, a few strategies
are introduced to reduce the size of the search space. An attempt
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is � rst made to improve the convergence of genetic algorithms.
To overcome the dif� culties of incomplete measurements in large
structures, a systematic procedure based on the work of Kim and
Bartkowicz8 is presented next to locate possible areas of damage.
The result is a two-stage damage detection method that constitutes
the basis of this study.

This study includes only numerical simulations and assumes that
the initial analytical model is an accurate representationof the un-
damaged structure.

Theoretical Background
The free vibration eigenvalueproblem for an N -DOF undamped

dynamic system is given by
¥
K ¡ !2

i ¢ M
¦

¢ fÁi g D 0; i D 1; 2; : : : ; N (1)

where M and K are the N £ N mass and stiffness matrices, respec-
tively; !i is the i th eigenvalue; and fÁi g is the corresponding i th
mode shape of the size N £ 1.

This equation indicates that a change in the property matrices
results in a change in the response. However, from a damage as-
sessment point of view, it is important to relate these differences to
changes in speci� c elements of the propertymatrices.Assuming the
mass matrix is constant because internal structural damage usually
does not result in a loss of materials, Hajela and Soeiro7 used the
stiffness matrix in a functional form as follows:

Ki D f .Ai ; Ii ; Ji ; ti ; L i ; Ei ; G i / (2)

in which Ai , Ii , and Ji are cross-sectionalarea, bending, and polar
moments of the inertia of the i th element; ti and L i are the element
dimensions; and Ei and G i are the extensional and shear moduli,
respectively.The net changesin thesequantitiesdue to damagewere
lumped into a singlecoef� cient for each element that constitutedthe
design variables of the optimization problem.

In the present work, the functional form of Eq. (2) is considered
for the dependencyof the stiffnessmatrix to the propertiesof various
elements. Furthermore, it is assumed that any change in the proper-
ties of each element due to the damage is equivalent to a decrease
in its modulus of elasticity. The net change in element properties
is, thus, lumped into a single coef� cient di for each element in the
form of a fraction of modulus of elasticity Ei . These coef� cients
(named stiffness coef� cients) are multiplied by the stiffness matri-
ces of their respective elements and constitute the vector of design
variables d. The optimization problem is formulated as determin-
ing the vector of design variables d that minimizes a natural cost
function representing the mismatch between the undamaged and
damaged eigendata as de� ned in Eq. (3). Upper and lower bounds
of 1 and 0 are assigned to design variables:
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The undamaged eigenvalue for the i th mode is !a
i and Áa

i j is the j th
elementof the i th eigenvectorfrom the undamagedmodal matrix Á.
Superscriptm indicatesa measuredquantityobtainedfromdamaged
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structure. The positive coef� cients ai and bi j allow for individual
weightings in the objective function. These weightings are set to
unity, representing the case where all measurements are assumed at
the same level of uncertainty. The summation upper limits r and s
represent the number of eigenvalues/eigenvectors and elements of
the eigenvectors, respectively, from the measured data.3

Genetic Algorithms
Genetic algorithms (GAs), which take advantage of random se-

lections in a directedoptimizationprocess,were establishedas valid
search algorithms by Holland.11 Because of their � exibility, glob-
ality, parallelism, simplicity, and good problem-solving capability,
GAs have receivedincreasingapplicationsin a wide varietyof � elds
with promising results.

When GAs are used in an optimization process, � rst an initial
population is generated at random, or chosen heuristically, as a set
of candidate solutions.Design variables are coded onto strings that
are called“chromosomes.” Each string representsa solutionpoint in
the search space, and is composed of characters that are analogous
to genes.The initial populationis evaluated to obtain the population
statisticssuchasminimum,maximum, and average� tness values,as
well as the sum of thepopulation� tnessfor furtherutilization.A new
population is reproduced on the basis of these evaluations through
genetic operators. Genetic operators contain selection, crossover,
mutation, inversion, dominance, etc. Therefore, a newly generated
population replaces members of the old population and enters the
evaluation stage again as the cycle of evaluation and reproduction
continues. The new population usually has higher � tness values,
which means that the populationimproves from generationto gener-
ation. A search concludeswhen it reaches the prescribedmaximum
generation, or when it satis� es other stopping criteria.

Though GAs have selection,crossover,and mutation operatorsin
common, their capabilities to simulate natural processes are differ-
ent. In the present work, we take advantage of steady-state genetic
algorithms (SSGA), which have better performance with respect
to custom GAs.12 The following sections provide details of such
algorithms as implemented in this work.

Representation Scheme
Among the different kinds of representation, the binary digit

string representationis chosen in the present study. The design vari-
ables are coded onto � xed-lengthbinary digit string representation,
which is constructed over the binary alphabet f0, 1g and concate-
nated head to tail to form a long string, the aforementionedchromo-
some. If each variable is represented by ¸ bit string, then the string
will contain 2¸ discrete values. The total length of the chromosome
is obtained by summing the lengths of strings ¸i .

Design Variables
Because the design variables considered in this study are contin-

uous, it is necessary to put the discrete values to a continuous form.
If the required accuracy assigned to a variable is denoted by ", then
the string length is calculated from the following equation:

¸ ¸ log2[.yu ¡ yl/="] (4)

where yu and yl are the upper and lower bounds of the variable y,
respectively.For example,if " D 0.01, yu D 1, and yl D 0, then¸ ¸ 7.
Thus, the binary string must � rst be decoded to an unsigneddecimal
integer. The physical value of the variable y is then calculated from
the following equation:

y D yl C I .yu ¡ yl /=.2¸ ¡ 1/ (5)

where I is an unsigned decimal integer.

Fitness Function
Fitness is used to allocate reproductive trails and, thus, is some

measureofworthinessto bemaximized.This means that stringswith
higher � tness value will have higher probability of being selected
as parents. Therefore, we have to transform the objective function
minimization to the � tness function maximization problem. To ac-
complish this, we subtract the strings’ � tness in each population

from the highest � tness value within the population to obtain the
new population � tness.

Selection
Selection, which is sometimes called reproduction, is equivalent

to the survival of the � ttest. In other words, the probability that the
� ttest strings (individuals) are selected for the next generations is
higher than that of other strings.

Selection operator samples from current population and copies
strings, with regard to their � tness, to generate the next population.
Here, the well-known weighted roulette wheel method is used for
selection. In this method, each string of the population has a place
on the wheel proportional to its � tness. When the wheel is twisted
each time, the randomstoppingpointwill be overone of individuals.
This is done to the number of required copies.

In custom GAs, the number of copies is equal to the number of
population individuals, that is, in each generation the whole pop-
ulation is replaced. This leads to large number of � tness function
evaluations.Besides, it may corrupt the structure of the population,
prohibitingthe transferof good schemata to the next generationand,
consequently, the convergence of the algorithm. If a small genera-
tion gap is used, the aforementioneddif� culties will be removed.12

It is, thus, suf� cient to select only two strings in each generationas
parents. The generated offspring will then be replaced with two of
the worst strings in the current population to generate the new pop-
ulation. The procedure � nds a steady-state convergence by doing
this.

A vital issue in the selection stage is the necessity to scale the
� tness function values. On one hand, there is a great tendency for
extraordinary individuals to dominate in the selection process. On
the other hand, during the � nal steps of selection, when the popula-
tion has largely converged, competition between individuals is de-
creased, which causes wandering.13 In both cases, scaling of � tness
valueswill enhancethe results.The power scalingof � tness values14

has been used in this work according to the following equation:

f 0 D [1 ¡ . fmax ¡ f /=. fmax ¡ fmin/]3 (6)

in which fmin and fmax are theminimumandmaximum� tnessvalues
of the population, respectively, and f and f 0 represent initial and
scaled � tness values.

Crossover
By the use of the crossover operator, parts of parent strings are

exchanged to generate offspring strings. There are many kinds of
crossovers, such as one-point, two-point, three-point, uniform, etc.
Typical crossovers are shown in Fig. 1.

To execute crossover in GAs, a probability must be assigned.
With regard to the importance of crossover in the algorithms, this
probability must be considered relatively high.

Mutation
The mutation operator arbitrarily alters the gene value according

to a predetermined probability. For binary digit string representa-
tion, the mutation operator � ips the bit from 1 to 0, or vice versa, on
a bit-by-bit basis. If the mutation probability is very low, then the

Fig. 1 Types of crossover.
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algorithms often get trapped at local optima. However, if the muta-
tion probability is high, the algorithms will degenerate to a random
search. Mutation operators introduce diversity and re� ect features
that are not presented in the current population and, therefore, can
prevent premature convergence.

Improved GA
The number of design variables in GAs is a critical factor in

obtaining an optimum solution. Let binary string representationbe
used for the design variables. Concatenating these strings head to
tail, a chromosome is formed that represents a point in the search
space. With the number of strings (design variables) denoted by n,
and the number of genes in each string by m, the search space will
consists of 2m £ n casesbecauseeach genemay take a value of 0 or 1.
If one can make the product of m £ n smaller, without signi� cant
reduction in the accuracy of the problem, then the search space will
become smaller and the probabilityof � nding the optimum solution
will be increased accordingly.

An attempt was made here to reduce the number of variables n
according to the concept of passive variables.15 Variables that co-
incide to their upper or lower bounds in several generations are
considered passive and are left out in the next generations. The re-
mainingvariablesare, thus,activevariables.This strategy, in spiteof
its generality, did not show reliability in our problem where the de-
sign variablesare members stiffnesscoef� cients di . This is because,
in some cases, the stiffness coef� cients of damaged members are
close to their boundary values. Treating these variables as passive
will cause the failure of the search.

To improve the performanceof GAs, we used another strategy in
which, through a multistep processes, the number of genes m were
reduced instead. To accomplish this goal, relatively short length
strings were � rst produced using Eq. (4) with an initial upper and
lower bounds, and an accuracy assigned to each variable. The GAs
were then executed for the � rst time. This approach will make the
search space smaller,which in turn speeds up the search process and
increases the possibility of obtaining approximate solutions. In the
next step, the length of strings were kept unchanged,but the differ-
ence between the upper and lower boundswere taken to be one-half
of their differencesin step 1. To locate the centerof the new bounds,
the approximatesolutionsobtained in step 1 were used.A schematic
of the procedure is shown in Fig. 2. In cases where the approximate
solutions assume values close to their initial upper or lower bound
values, the new upperor lower boundvalue will be limited to the ini-
tial value. With these new values, GAs are performed once again to
produce more accurate solutions.The procedure is repeated several

Fig. 2 Multistep reduction of design variable bounds.

times until the desired accuracy is achieved. Typically, a total of
three iterations results in good solutions.

Note that two major factors greatly in� uence the success of this
procedure. The � rst is the required accuracy assigned to the vari-
ables. Equation (4) indicates that this parameter affects the string
length. Because initial bounds are constant, if " is chosen, such that
the strings lengths become too short, the process will not cover op-
timum solutions because the search space becomes too small. The
second factor (not as importantas the � rst one) is the numberof gen-
erations considered in the algorithm. This number should be high
enough to result in good convergencetoward optimum solutions in
step 1.

Reducing the Size of Search Space
To locate the possibledamage areas, measured mode shapes, nat-

ural frequenciesof the damagedstructure,and those calculatedfrom
the analytical model were exploited.The dynamic residual method
was used. Consider the characteristic equation of a damaged struc-
tural system as follows:

¥
Kd ¡ !2

di
¢ Md

¦
¢
©
Ádi

ª
D 0 (7)

where Kd and Md represent the stiffness and mass matrices of the
damaged structure, respectively, and !di and Ádi

denote its i th nat-
ural frequencyand eigenmode, respectively. If the stiffness and the
mass of the undamaged model denoted by Ka and Ma , respectively,
one can write

Kd D Ka ¡ 1K; Md D Ma ¡ 1M (8)

in which 1K and 1M are the changes in the stiffness and mass
matrices, respectively, due to the damage. Substituting Eq. (8) into
Eq. (7) gives

£
Ka ¡ !2

di
¢ Ma

¤
¢
©
Ádi

ª
D

£
1K ¡ !2

di
¢ 1M

¤
¢
©
Ádi

ª
D Ri (9)

The right-hand side of Eq. (9) is de� ned as dynamic residual. As-
suming the mass matrix remains unchanged, that is, 1M D 0, one
obtains

£
Ka ¡ !2

di
¢ Ma

¤
¢
©
Ádi

ª
D 1K ¢

©
Ádi

ª
D Ri (10)

or

Zdi ¢
©
Ádi

ª
D Ri (11)

where

Zdi D Ka ¡ !2
di

¢ Ma

If the stiffness matrix does not experience any changes, the right-
hand side of Eq. (10) is zero. However, if some degrees of freedom
are affected by damage, the correspondingelements in the residual
force vector Ri will be nonzero or a large value.

Because of incompletemeasurement, the order of the undamaged
model and measured responses are not the same. Thus, it is neces-
sary to use model reduction/expansion techniques to make them
compatible.This introducessome errors in the calculationsthat will
make the interpretationof the residualforcevectorRi more dif� cult.

To circumvent the problem just discussed, we took advantage of
the de� nition of damage vector.5 Equation (11) can be rewritten in
the following form:

R j
i D Z j

di
¢
©
Ádi

ª
D

®®Z j
d i

®® ¢
®®Ádi

®® ¢ cos
¡
µ

j
i

¢
(12)

where R j
i represents the j th DOF of the damage vector in mode i ,

Z j
di is the j th row of the Zdi matrix,andµ

j
i denotestheanglebetween

Z j
di and fÁdi g vectors. R j

i D 0 corresponds to µ
j

i D 90 deg, provided
that measurementsare free of noise. Errors in modal measurements
cause µ

j
i to deviate slightly from 90 deg; However, this deviation

will be more pronouncedat the DOF affected by the damage. From
deviation of these angles from 90 deg, one can locate the possible
areas of damage. Another advantage of this method is that for a
particular DOF the angles of force vectors calculated for different
modes can be added together to increase the reliability of damage
detection in that DOF.
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Two-Stage Damage Detection Method
This procedure systematically locates possible damage areas in

the � rst stage. In the second stage, the candidate damaged elements
are further examined to determine their extent of damage.

Stage 1: Locating Possible Areas of Damage
In this stage, the order of the undamaged model and the number

of DOF at which measurements are taken are made compatible.
This is accomplishedby consideringa set of intermediateDOF. The
order of the undamaged model, that is, mass and stiffness matrices,
is reduced, and the order of measured eigenmodes(mode shapes) is
expanded accordingly to these intermediateDOF.8 Damage vectors
are then calculated from Eq. (12), and areas of possible damage are
located.

Stage 2: Determining Extent of Damage in Members
In the secondstage,stiffness coef� cientsof the members in possi-

ble damaged areas are chosen as design variables, and the objective
function de� ned in Eq. (3) is minimized using SSGAs. The undam-
aged model is re� ned such that the difference between the model
response and measured response assumes a least value. Final val-
ues of design variables will indicate the extent of the damage in the
members.

Numerical Studies
To validate the damage detection procedure proposed in this

paper, several planar structures were examined. The results of this
examination for two truss structures, one small and the other a rel-

Table 1 Estimation of members’ stiffness coef� cients in TR15-1 damage scenario

First 5 modes, First 6 modes, 12 modes,
® D 3%, ¯ D 3%, ° D 1% ® D 3%, ¯ D 3%, ° D 1% ® D 3%, ¯ D 3%, ° D 1%

Exact
Member no. NPM GA1 GA2 NPM GA1 GA2 NPM GA1 GA2 value

1 0.99 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00
2 1.00 0.88 1.00 1.00 0.97 1.00 0.97 1.00 0.99 1.00
3 0.90 1.00 0.98 1.00 0.97 1.00 1.00 1.00 1.00 1.00
4 0.91 1.00 1.00 1.00 0.97 1.00 1.00 0.97 1.00 1.00
5 1.00 0.97 0.98 1.00 1.00 0.98 1.00 0.97 1.00 1.00
6 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.97 0.98 1.00
7 1.00 1.00 1.00 1.00 0.97 0.98 1.00 1.00 0.99 1.00
8 1.00 1.00 0.92 0.98 0.88 0.98 0.96 1.00 0.98 1.00
9 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.97 1.00 1.00
11 0.68 0.97 1.00 0.95 0.97 1.00 1.00 0.97 0.98 1.00
12 0.70 1.00 0.98 1.00 0.98 0.98 1.00 0.97 0.98 1.00
13 0.78 0.85 0.73 0.66 0.79 0.75 0.66 0.73 0.73 0.75
14 0.98 0.73 0.88 1.00 0.82 0.84 1.00 0.82 0.87 0.85
15 1.00 1.00 0.98 1.00 0.97 0.98 0.99 0.98 1.00 1.00
Value of objective function 0.22441 0.05632 0.01695 0.05499 0.02716 0.01653 0.12455 0.04191 0.03681

Table 2 Estimation of members’ stiffness coef� cients in TR15-2 damage scenario

6 modes, 6 modes, 6 modes,
® D 0%, ¯ D 0%, ° D 0% ® D 3%, ¯ D 3%, ° D 1% ® D 5%, ¯ D 7%, ° D 2%

Exact
Member no. NPM GA1 GA2 NPM GA1 GA2 NPM GA1 GA2 value

1 0.26 0.11 0.11 0.23 0.10 0.09 0.22 0.31 0.13 0.10
2 0.41 0.97 0.97 0.40 0.95 0.94 0.54 0.49 1.00 1.00
3 0.38 0.52 0.50 0.40 0.52 0.51 0.47 0.52 0.52 0.50
4 1.00 0.97 1.00 1.00 0.97 0.99 0.80 1.00 1.00 1.00
5 1.00 0.97 1.00 1.00 0.88 0.93 1.00 1.00 1.00 1.00
6 0.73 0.97 1.00 0.75 1.00 1.00 1.00 0.64 0.87 1.00
7 0.46 1.00 0.98 0.48 1.00 1.00 1.00 1.00 1.00 1.00
8 0.90 1.00 0.98 0.93 0.97 0.98 0.72 1.00 0.91 1.00
9 0.73 0.97 1.00 0.73 0.97 0.97 0.56 0.52 0.84 1.00
10 1.00 0.97 0.98 1.00 1.00 1.00 1.00 1.00 0.87 1.00
11 0.75 1.00 0.98 0.76 1.00 1.00 0.49 0.97 0.96 1.00
12 1.00 0.52 0.50 1.00 0.52 0.52 0.46 0.61 0.47 0.50
13 1.00 0.13 0.11 1.00 0.13 0.12 0.97 0.11 0.12 0.10
14 0.64 0.95 0.97 0.67 0.95 0.98 0.78 0.88 0.84 1.00
15 0.99 0.92 0.96 1.00 0.91 0.92 1.00 1.00 0.88 1.00
Value of objective function 0.39572 0.00377 0.00116 0.37420 0.00912 0.00812 0.50266 0.11476 0.02932

atively large truss, are presented here. The responses of damaged
structures were simulated by reducing the initial stiffness of one or
several members of the trusses in different scenarios.Random noise
was added to the measured responses to account for the in� uence
of measurement inaccuracy.

Three types of measurement noise, ®, ¯ , and ° , were introduced
in the simulations:frequencyrandomscalenoiseof®%, modeshape
random scale noise of ¯%, and mode shape random bias noise of
° % (Ref. 8). Mode shape random bias noise was added to account
for mode shape errors near nodal points.

The proposed two-stage damage detection method was only ap-
plied to the larger truss. For the small truss, due to limited number
of design variables, the location and the extent of the damage was
identi� ed in one stage only. A number of FORTRAN programs,
developed by the authors, were used to implement the procedures
outlined in the preceding sections. Model reduction/expansion was
performed using the algorithms developed by Guyan16 and Alvin.4

More exact model reduction techniquessuch as IRS17 and SEREP18

were also used, but they led to worse results compared to Guyan
method.16

In each scenario, the objective function was minimized using
SSGAs. Two different cases were considered. In case 1, the com-
monly used SSGAs were employed,whereas in case 2, the proposed
improved GAs (multistep procedure) were utilized. In Tables 1–7,
GA1 and GA2 refer to the results obtained in case 1 and case 2,
respectively.

To better demonstrate the effectiveness of the SSGAs proposed
in this paper for the assessment of structural damage, Broydon–

Fletcher–Goldfarb–Shanno variable metric method (see Ref. 19)
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Table 3 Estimation of members’ stiffness coef� cients in TR15-3 damage scenario

4 modes, 4 modes, 4 modes,
® D 0%, ¯ D 0%, ° D 0% ® D 3%, ¯ D 3%, ° D 1% ® D 5%, ¯ D 7%, ° D 2%

Exact
Member no. NPM GA1 GA2 NPM GA1 GA2 NPM GA1 GA2 value

1 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.97 0.98 1.00
2 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 0.97 0.98 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 0.99 0.97 1.00 1.00 1.00 1.00 1.00
5 0.99 0.73 0.70 1.00 0.79 0.80 1.00 0.85 0.76 0.70
6 0.99 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00
7 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00
8 0.96 1.00 1.00 1.00 1.00 1.00 0.92 0.88 0.91 1.00
9 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.97 1.00
10 1.00 0.97 0.98 1.00 0.88 1.00 1.00 1.00 0.94 1.00
11 0.98 1.00 1.00 0.99 1.00 1.00 0.81 0.88 0.90 1.00
12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
13 0.47 0.50 0.51 0.44 0.49 0.45 0.42 0.40 0.45 0.50
14 0.99 1.00 0.99 0.99 0.97 1.00 0.99 1.00 1.00 1.00
15 1.00 0.58 0.58 1.00 0.58 0.66 1.00 0.92 0.74 0.60
Value of objective function 0.00586 0.00009 0.00001 0.00895 0.00537 0.00490 0.02111 0.01955 0.01923

Table 4 TR40-1 damage vector

DOF no. Damage vector Possible damagea

1 18.62 ——
2 36.54 ——
3 57.22 £
4 84.16 £
5 77.67 £
6 81.61 £
7 100.00 £
8 38.17 ——
9 5.74 ——
10 12.76 ——
11 18.94 ——
12 35.34 ——
13 31.78 ——
14 37.94 ——
15 50.28 £
16 17.88 ——

a£ Indicates possible damage.

was also employed to determine a solution to the unconstrainedop-
timization problem. This method is a nonlinear mathematical pro-
gramming method (NPM). Results obtained from this analysis are
marked by NPM in Tables 1–7.

The values of genetic parameters used in implementationof GAs
are as follows:The numberof designvariablesis equal to thenumber
of selected truss elements, string length is equal to 5 or 6, chromo-
some length is equal to the number of design variables times string
length, population in each generation equals chromosome length,
mutation probability is 0.05, crossover probability is 0.9–1.0, and
the maximum number of generations in each iteration is 5000.

One-, two-, and three-point crossover, as well as uniform
crossover, were examined. Among them, the two-point crossover
gave the best results. Mutation had a more pronounced effect than
crossover. A crossover probability between 0.9–1.0 did not affect
the results signi� cantly, whereas a mutation probability much less
than 0.05 caused an early convergenceof the algorithm.

Example 1: 15-Bar Planar Truss
The 15-bar truss with 12 DOF is shown in Fig. 3. To account for

the problem of incomplete measurement, it was assumed that the
measurementsare takenonly at the sixverticalDOF. In this example,
the number of design variables was set equal to the number of truss
members.

In the � rst scenario,TR15-1, damage was introducedin elements
13 and 14 by reducing their stiffness to 75 and 85% of the initial
values, respectively.Measurement noise was simulated and entered
into the analysis. Measured and analytically predicted responses
were used to detect the location and the extent of the damage in
the structure. The results are shown in Table 1. For the � rst � ve

Fig. 3 Plane truss TR-15.

eigenmodes, both GAs and NPM identi� ed the damage in member
13. However, the performance of GA2 is more accurate than those
of both GA1 and NPM, as can be observedby comparing the values
of design variables and the values of the objective functions.When
six eigenmodes were utilized, NPM was only able to locate the
damage in member 13, whereas both GA1 and GA2 identi� ed the
damaged elements, and the extent of the damage was assessed with
good accuracy. The values of objective functions show the better
performance of GA2. Inadequacyof NPM in detecting the damage
is clear from Table 1 because complete measurementat 12 DOF and
full set of eigenmodes could not locate the damage in member 14.

In the second scenario,TR15-2, damage was introduced in mem-
bers 1, 3, 12, and 13 of the 15-bar truss. Damaged members were
assumed to have 10, 50, 50, and 10% of their initial stiffness, re-
spectively. The � rst six modes were used to identify the damage in
the structure.Two cases were considered:1) measurements are free
of noise and 2) measurements are corrupted by different levels of
noise. The results are shown in Table 2. It is observed that GAs eas-
ily identify the location as well as the extent of the damage in both
cases, whereas NPM, even in the noise-free case, confronts failure.
Values of objective functions show the better performanceof GA2.
However, some differences are observed between the exact and the
estimated values of members stiffness for the case where the noise
level is high.

In the third scenario of the 15-bar truss, members 5, 13, and 15
were damaged by reduction of their stiffness’s to 70, 50, and 60%
of the initial values, respectively.The � rst four modes were used to
identify the damage in the presenceof corruptednoise.From the re-
sults shownin Table 3, it is observedthat GAs detect the locationand
the extent of the damage with good accuracy. GA2 performs better
than GA1, and NPM fails to locate the damage in members 5 and 15.

Example 2: 40-Bar Planar Truss
This structure, which has been used as a test and/or simulation

model by many researchers, is examined in this section. Figure 4
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Table 5 Estimation of members’ stiffness coef� cients in TR40-1 damage scenario

9 modes, 9 modes, 9 modes,
® D 0%, ¯ D 0%, ° D 0% ® D 3%, ¯ D 3%, ° D 1% ® D 5%, ¯ D 7%, ° D 2%

Exact
Member no. NPM GA1 GA2 NPM GA1 GA2 NPM GA1 GA2 value

4 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
13 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
26 0.99 0.75 0.80 1.00 0.94 0.86 1.00 1.00 1.00 0.80
27 0.99 1.00 1.00 0.97 1.00 1.00 0.97 0.97 0.97 1.00
28 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
29 1.00 1.00 1.00 1.00 0.97 0.95 1.00 1.00 1.00 1.00
30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
31 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
33 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
34 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
35 1.00 0.94 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
36 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00
37 1.00 0.97 1.00 1.00 1.00 0.98 1.00 0.97 1.00 1.00
38 1.00 0.94 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
Value of objective function 0.00063 0.00006 0.00003 0.10851 0.02939 0.02812 0.10851 0.10864 0.10855

Table 6 TR40-2 damage vector

DOF no. Damage vector Possible damagea

1 10.26 ——
2 29.26 ——
3 22.04 ——
4 44.25 ——
5 28.86 ——
6 82 £
7 100 £
8 48.95 £
9 4.09 ——
10 10.65 ——
11 20.98 ——
12 10.57 ——
13 11.83 ——
14 32.29 ——
15 49.41 £
16 28.36 ——

a£ Indicates possible damage.

Fig. 4 Plane truss TR-40.

shows the 40-bar truss, which assumes lumped masses at its nodes.
Because this structure is considered to be large, the two-stage dam-
agedetectionmethodproposedin thispaperwas usedfor its analysis.

The truss has 32 translational DOF, from which only 8 DOF
were assumedto be instrumented.The intermediateDOF were taken
equal to 16. The order of the analyticalmodel was reduced and that
of the measured eigenmodes was expanded to 16 accordingly.

Selection of the intermediate DOF and the DOF to be instru-
mented is of great importance. If the sole objective is to increase
the accuracy of the reduced model, use can be made of algo-

Fig. 5 Intermediate DOF.

rithms that select master DOF. The procedure proposed by Shah
and Raymund20 was employed in this work for the selection of
master DOF. The results indicated that by increasing the accuracy
of the reduced model, the detection of the damaged areas is not
guaranteed.

It is, thus, of interest to select those DOF as master that not only
ensure a good accuracy for the reduced model but also extend over
the full length of the structureand divide it into relativelysmall por-
tions such that any changes in the stiffness characteristics of these
portionscan be related to the DOF at their two ends. The intermedi-
ate and instrumented DOF for the 40-bar truss under consideration
are shown in Fig. 5.

In the � rst scenario, TR40-1, the stiffness of member 26 was
reduced to 80% of its initial value. Where the � rst nine modes are
used, the results obtained in the � rst stage of the two-stage method
are shown in Table 4. DOF having values larger than 50% of the
maximum component of the damage vector were considered those
affected by damage.

From the results shown in Table 4, bays 4–7 are identi� ed as
possibledamagedbays.Next, the stiffnesscoef� cientsof participant
members of these bays as design variableswere considered,and the
extent of the damage was estimated and shown in Table 5. Table 5
indicates that GA2 was able to estimate the extent of the damage in
member 26 with good accuracy when the measurements are free of
noise, or when the corrupted noise is of relatively low level.

In TR40-2 scenario, the stiffness of members 7, 38, and 40 were
reduced to 80, 50, and 80% of their initial values, respectively.The
� rst nine modes were used.Locationsof possibledamage are shown
in Table6. Bays7 and 8 are identi� ed as damagedbays.The stiffness
coef� cientsofmembers in thesebayswerenextconsideredas design
variables to detect the extent of the damage in them. The results are
shown in Table 7. It is observed that, when measurementsare free of
noise, GA2 clearly detects the extentof the damage in the members.
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Table 7 Estimation of members’ stiffness coef� cients in TR40-2 damage scenario

9 modes, 9 modes, 9 modes,
® D 0%, ¯ D 0%, ° D 0% ® D 3%, ¯ D 3%, ° D 1% ® D 5%, ¯ D 7%, ° D 2%

Exact
Member no. NPM GA1 GA2 NPM GA1 GA2 NPM GA1 GA2 value

7 0.76 0.83 0.80 0.76 0.83 0.82 0.76 0.82 0.80 0.80
8 1.00 0.85 1.00 1.00 0.91 0.91 1.00 0.94 0.98 1.00
16 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00
17 1.00 1.00 1.00 1.00 0.97 0.98 1.00 0.97 0.95 1.00
35 1.00 1.00 1.00 1.00 0.85 0.93 1.00 1.00 1.00 1.00
36 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
37 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
38 1.00 0.46 0.51 1.00 0.47 0.50 1.00 0.43 0.48 0.50
39 1.00 1.00 0.99 1.00 0.98 0.98 1.00 0.92 0.92 1.00
40 1.00 0.91 0.81 1.00 0.89 0.95 1.00 0.91 0.93 0.80
9 1.00 0.79 0.99 1.00 1.00 0.74 1.00 1.00 1.00 1.00
Value of objective function 0.00460 0.00100 0.00001 0.05515 0.0491 0.04886 0.10986 0.10278 0.10272

In the presence of noise, however, the extent of the damage is not
accurate for member 40, and minor damages are also assessed to
other members such as 8, 9, and 39.

Conclusions
A two-stagedamagedetectionmethod was proposed in this paper

to circumvent the problem of incomplete measurements. In the � rst
stage, possibledamaged areas are detected.SSGAs are then used as
an optimization tool to detect the extent of the damage in members.

SSGAs were modi� ed to act as a multistepprocess,which, in turn,
increased the reliability of the damage detection algorithm consid-
erably. In many cases where nonlinear mathematical programming
methods based on gradients of objective functions were not able to
detect the damage, the SSGAs performed well. There were, how-
ever, some cases (not presented) in which GAs were not able to
solve the intrinsic dif� culty of the identi� cation techniquesas used
in damage detection. Where the damaged member assumes a min-
imum kinetic energy in those measured modes that experience the
greatest changes because of the damage, the identi� cation of that
scenario will be either very dif� cult or sometimes impossible.

Though the proposed algorithm has the advantage of being sys-
tematic, the inevitable errors such as measurement noise, model
expansion, and especially model reduction errors presented dif� -
culties in locating possible damaged areas. More exact model re-
duction techniques such as IRS17 and SEREP18 led to worse results
compared to the Guyan method.16
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